40 research outputs found

    Le moustique, ennemi public n° 1 ?

    Get PDF
    The invasive presence of mosquitoes and their pathogens is changing our daily lives and challenging our lifestyles. Mosquitoes contribute to thousands of deaths worldwide each year by transmitting various parasites and viruses, responsible for diseases with well-known names: malaria, dengue, zika, chikungunya, etc. What is less well known, however, is that mosquitoes also contribute to the balance of ecosystems as a source of food for many species and help pollinate plants. Their great morphological, biological, ecological and genetic diversity must be well understood before solutions can be considered to better control their spread and outbreak, and thus control the transmission of pathogens. Faced with this rapidly evolving threat, innovative and concerted strategies to control these insects are being deployed in many countries. Aimed at a wide audience, but also at students and their teachers, this book, illustrated with numerous examples, is a synthesis of knowledge on mosquitoes and current control methods

    Phenotypic insecticide resistance in arbovirus mosquito vectors in Catalonia and its capital Barcelona (Spain)

    Get PDF
    A range of mosquito species that belong to the Culicidae family are responsible for the worldwide transmission of infectious arboviral diseases such as dengue fever, Zika, West Nile fever and Chikungunya fever. Spain is at risk of arbovirus outbreaks, as various arboviral diseases are frequently introduced and it has established competent vector populations. Autochthonous human cases of West Nile virus have been reported infrequently since 2004, and since October 2018 three autochthonous human case of dengue fever have been confirmed. In response to an outbreak of any arboviral disease, space spraying or fogging will be implemented to control adult mosquito populations. To ensure adulticiding is costeffective, the insecticide susceptibility status of vectors throughout Catalonia, an autonomous region in north-eastern Spain, was assessed through standardized WHO tube and CDC bottle bioassays. All Culex pipiens populations tested were resistant to at least one of the pyrethroids tested, whereas Aedes albopictus populations were susceptible to all pyrethroids tested. More detailed studies on the Cx. pipiens populations from the Barcelona area (the capital and largest city of Catalonia) revealed resistance to all four classes of public health insecticides available (pyrethroids, carbamates, organophosphates and organochlorides). All Ae. albopictus populations were susceptible to those classes, except for one of the tests performed with pirimiphos-methyl (an organophosphate). Pyrethroids are currently the first line chemical class to be used in space spray operations in response to an outbreak of an arboviral disease. While pyrethroids can be effective in reducing Ae. albopictus populations, this class may not be effective to control Cx. pipiens populations.info:eu-repo/semantics/publishedVersio

    Shifting From Sectoral to Integrated Surveillance by Changing Collaborative Practices: Application to West Nile Virus Surveillance in a Small Island State of the Caribbean

    Get PDF
    After spreading in the Americas, West Nile virus was detected in Guadeloupe (French West Indies) for the first time in 2002. Ever since, several organizations have conducted research, serological surveys, and surveillance activities to detect the virus in horses, birds, mosquitoes, and humans. Organizations often carried them out independently, leading to knowledge gaps within the current virus' situation. Nearly 20 years after the first evidence of West Nile virus in the archipelago, it has not yet been isolated, its impact on human and animal populations is unknown, and its local epidemiological cycle is still poorly understood. Within the framework of a pilot project started in Guadeloupe in 2019, West Nile virus was chosen as a federative model to apply the “One Health” approach for zoonotic epidemiological surveillance and shift from a sectorial to an integrated surveillance system. Human, animal, and environmental health actors involved in both research and surveillance were considered. Semi-directed interviews and a Social Network Analysis were carried out to learn about the surveillance network structure and actors, analyze information flows, and identify communication challenges. An information system was developed to fill major gaps: users' needs and main functionalities were defined through a participatory process where actors also tested and validated the tool. Additionally, all actors shared their data, which were digitized, cataloged, and centralized, to be analyzed later. An R Shiny server was integrated into the information system, allowing an accessible and dynamic display of data showcasing all of the partners' information. Finally, a series of virtual workshops were organized among actors to discuss preliminary results and plan the next steps to improve West Nile Virus and vector-borne or emerging zoonosis surveillance. The actors are willing to build a more resilient and cooperative network in Guadeloupe with improved relevance, efficiency, and effectiveness of their work

    How do species, population and active ingredient influence insecticide susceptibility in Culicoides biting midges (Diptera: Ceratopogonidae) of veterinary importance?

    Get PDF
    Background Culicoides biting midges are biological vectors of internationally important arboviruses of livestock and equines. Insecticides are often employed against Culicoides as a part of vector control measures, but systematic assessments of their efficacy have rarely been attempted. The objective of the present study is to determine baseline susceptibility of multiple Culicoides vector species and populations in Europe and Africa to the most commonly used insecticide active ingredients. Six active ingredients are tested: three that are based on synthetic pyrethroids (alpha-cypermethrin, deltamethrin and permethrin) and three on organophosphates (phoxim, diazinon and chlorpyrifos-methyl). Methods Susceptibility tests were conducted on 29,064 field-collected individuals of Culicoides obsoletus Meigen, Culicoides imicola Kieffer and a laboratory-reared Culicoides nubeculosus Meigen strain using a modified World Health Organization assay. Populations of Culicoides were tested from seven locations in four different countries (France, Spain, Senegal and South Africa) and at least four concentrations of laboratory grade active ingredients were assessed for each population. Results The study revealed that insecticide susceptibility varied at both a species and population level, but that broad conclusions could be drawn regarding the efficacy of active ingredients. Synthetic pyrethroid insecticides were found to inflict greater mortality than organophosphate active ingredients and the colony strain of C. nubeculosus was significantly more susceptible than field populations. Among the synthetic pyrethroids, deltamethrin was found to be the most toxic active ingredient for all species and populations. Conclusions The data presented represent the first parallel and systematic assessment of Culicoides insecticide susceptibility across several countries. As such, they are an important baseline reference to monitor the susceptibility status of Culicoides to current insecticides and also to assess the toxicity of new active ingredients with practical implications for vector control strategies. (Résumé d'auteur

    Different viral genes modulate virulence in model mammal hosts and Culex pipiens vector competence in Mediterranean basin lineage 1 West Nile virus strains

    Get PDF
    West Nile virus (WNV) is a single-stranded positive-sense RNA virus (+ssRNA) belonging to the genus Orthoflavivirus. Its enzootic cycle involves mosquito vectors, mainly Culex, and wild birds as reservoir hosts, while mammals, such as humans and equids, are incidental dead-end hosts. It was first discovered in 1934 in Uganda, and since 1999 has been responsible for frequent outbreaks in humans, horses and wild birds, mostly in America and in Europe. Virus spread, as well as outbreak severity, can be influenced by many ecological factors, such as reservoir host availability, biodiversity, movements and competence, mosquito abundance, distribution and vector competence, by environmental factors such as temperature, land use and precipitation, as well as by virus genetic factors influencing virulence or transmission. Former studies have investigated WNV factors of virulence, but few have compared viral genetic determinants of pathogenicity in different host species, and even fewer have considered the genetic drivers of virus invasiveness and excretion in Culex vector. In this study, we characterized WNV genetic factors implicated in the difference in virulence observed in two lineage 1 WNV strains from the Mediterranean Basin, the first isolated during a significant outbreak reported in Israel in 1998, and the second from a milder outbreak in Italy in 2008. We used an innovative and powerful reverse genetic tool, e.g., ISA (infectious subgenomic amplicons) to generate chimeras between Israel 1998 and Italy 2008 strains, focusing on non-structural (NS) proteins and the 3′UTR non-coding region. We analyzed the replication of these chimeras and their progenitors in mammals, in BALB/cByJ mice, and vector competence in Culex (Cx.) pipiens mosquitoes. Results obtained in BALB/cByJ mice suggest a role of the NS2B/NS3/NS4B/NS5 genomic region in viral attenuation in mammals, while NS4B/NS5/3′UTR regions are important in Cx. pipiens infection and possibly in vector competence
    corecore